3.2.94 \(\int \sqrt {d \cot (e+f x)} \tan (e+f x) \, dx\) [194]

3.2.94.1 Optimal result
3.2.94.2 Mathematica [A] (verified)
3.2.94.3 Rubi [A] (warning: unable to verify)
3.2.94.4 Maple [B] (warning: unable to verify)
3.2.94.5 Fricas [C] (verification not implemented)
3.2.94.6 Sympy [F]
3.2.94.7 Maxima [A] (verification not implemented)
3.2.94.8 Giac [F]
3.2.94.9 Mupad [B] (verification not implemented)

3.2.94.1 Optimal result

Integrand size = 19, antiderivative size = 192 \[ \int \sqrt {d \cot (e+f x)} \tan (e+f x) \, dx=\frac {\sqrt {d} \arctan \left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} f}-\frac {\sqrt {d} \arctan \left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} f}+\frac {\sqrt {d} \log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} f}-\frac {\sqrt {d} \log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} f} \]

output
1/2*arctan(1-2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))*d^(1/2)/f*2^(1/2)-1/2*a 
rctan(1+2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))*d^(1/2)/f*2^(1/2)+1/4*ln(d^( 
1/2)+cot(f*x+e)*d^(1/2)-2^(1/2)*(d*cot(f*x+e))^(1/2))*d^(1/2)/f*2^(1/2)-1/ 
4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)+2^(1/2)*(d*cot(f*x+e))^(1/2))*d^(1/2)/f*2^ 
(1/2)
 
3.2.94.2 Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.69 \[ \int \sqrt {d \cot (e+f x)} \tan (e+f x) \, dx=\frac {d \sqrt {\cot (e+f x)} \left (2 \arctan \left (1-\sqrt {2} \sqrt {\cot (e+f x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\cot (e+f x)}\right )+\log \left (1-\sqrt {2} \sqrt {\cot (e+f x)}+\cot (e+f x)\right )-\log \left (1+\sqrt {2} \sqrt {\cot (e+f x)}+\cot (e+f x)\right )\right )}{2 \sqrt {2} f \sqrt {d \cot (e+f x)}} \]

input
Integrate[Sqrt[d*Cot[e + f*x]]*Tan[e + f*x],x]
 
output
(d*Sqrt[Cot[e + f*x]]*(2*ArcTan[1 - Sqrt[2]*Sqrt[Cot[e + f*x]]] - 2*ArcTan 
[1 + Sqrt[2]*Sqrt[Cot[e + f*x]]] + Log[1 - Sqrt[2]*Sqrt[Cot[e + f*x]] + Co 
t[e + f*x]] - Log[1 + Sqrt[2]*Sqrt[Cot[e + f*x]] + Cot[e + f*x]]))/(2*Sqrt 
[2]*f*Sqrt[d*Cot[e + f*x]])
 
3.2.94.3 Rubi [A] (warning: unable to verify)

Time = 0.43 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.95, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.684, Rules used = {3042, 25, 2030, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan (e+f x) \sqrt {d \cot (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {\sqrt {-d \tan \left (e+f x+\frac {\pi }{2}\right )}}{\tan \left (e+f x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {\sqrt {-d \tan \left (\frac {1}{2} (2 e+\pi )+f x\right )}}{\tan \left (\frac {1}{2} (2 e+\pi )+f x\right )}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle d \int \frac {1}{\sqrt {-d \tan \left (\frac {1}{2} (2 e+\pi )+f x\right )}}dx\)

\(\Big \downarrow \) 3957

\(\displaystyle -\frac {d^2 \int \frac {1}{\sqrt {d \cot (e+f x)} \left (\cot ^2(e+f x) d^2+d^2\right )}d(d \cot (e+f x))}{f}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {2 d^2 \int \frac {1}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{f}\)

\(\Big \downarrow \) 755

\(\displaystyle -\frac {2 d^2 \left (\frac {\int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}+\frac {\int \frac {d^2 \cot ^2(e+f x)+d}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}\right )}{f}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {2 d^2 \left (\frac {\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}+\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 d}+\frac {\int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}\right )}{f}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {2 d^2 \left (\frac {\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}-\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}}{2 d}+\frac {\int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}\right )}{f}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {2 d^2 \left (\frac {\int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}\right )}{f}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {2 d^2 \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}}{2 d}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 d^2 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}}{2 d}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 d^2 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}+\frac {\int \frac {\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {d}}}{2 d}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}\right )}{f}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {2 d^2 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}+\frac {\frac {\log \left (\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}-\frac {\log \left (-\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}}{2 d}\right )}{f}\)

input
Int[Sqrt[d*Cot[e + f*x]]*Tan[e + f*x],x]
 
output
(-2*d^2*((-(ArcTan[1 - Sqrt[2]*Sqrt[d]*Cot[e + f*x]]/(Sqrt[2]*Sqrt[d])) + 
ArcTan[1 + Sqrt[2]*Sqrt[d]*Cot[e + f*x]]/(Sqrt[2]*Sqrt[d]))/(2*d) + (-1/2* 
Log[d - Sqrt[2]*d^(3/2)*Cot[e + f*x] + d^2*Cot[e + f*x]^2]/(Sqrt[2]*Sqrt[d 
]) + Log[d + Sqrt[2]*d^(3/2)*Cot[e + f*x] + d^2*Cot[e + f*x]^2]/(2*Sqrt[2] 
*Sqrt[d]))/(2*d)))/f
 

3.2.94.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.2.94.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(447\) vs. \(2(145)=290\).

Time = 14.92 (sec) , antiderivative size = 448, normalized size of antiderivative = 2.33

method result size
default \(-\frac {\sqrt {-\frac {d \left (\csc \left (f x +e \right ) \left (1-\cos \left (f x +e \right )\right )^{2}-\sin \left (f x +e \right )\right )}{1-\cos \left (f x +e \right )}}\, \left (\ln \left (\frac {\csc \left (f x +e \right ) \left (1-\cos \left (f x +e \right )\right )^{2}+2 \sin \left (f x +e \right ) \sqrt {\left (\csc ^{3}\left (f x +e \right )\right ) \left (1-\cos \left (f x +e \right )\right )^{3}-\csc \left (f x +e \right )+\cot \left (f x +e \right )}+2-2 \cos \left (f x +e \right )-\sin \left (f x +e \right )}{1-\cos \left (f x +e \right )}\right )+2 \arctan \left (\frac {\sin \left (f x +e \right ) \sqrt {\left (\csc ^{3}\left (f x +e \right )\right ) \left (1-\cos \left (f x +e \right )\right )^{3}-\csc \left (f x +e \right )+\cot \left (f x +e \right )}+1-\cos \left (f x +e \right )}{1-\cos \left (f x +e \right )}\right )-\ln \left (-\frac {-\csc \left (f x +e \right ) \left (1-\cos \left (f x +e \right )\right )^{2}+2 \sin \left (f x +e \right ) \sqrt {\left (\csc ^{3}\left (f x +e \right )\right ) \left (1-\cos \left (f x +e \right )\right )^{3}-\csc \left (f x +e \right )+\cot \left (f x +e \right )}-2+2 \cos \left (f x +e \right )+\sin \left (f x +e \right )}{1-\cos \left (f x +e \right )}\right )+2 \arctan \left (\frac {\sin \left (f x +e \right ) \sqrt {\left (\csc ^{3}\left (f x +e \right )\right ) \left (1-\cos \left (f x +e \right )\right )^{3}-\csc \left (f x +e \right )+\cot \left (f x +e \right )}-1+\cos \left (f x +e \right )}{1-\cos \left (f x +e \right )}\right )\right ) \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ) \sqrt {2}}{4 f \sqrt {\csc \left (f x +e \right ) \left (\left (\csc ^{2}\left (f x +e \right )\right ) \left (1-\cos \left (f x +e \right )\right )^{2}-1\right ) \left (1-\cos \left (f x +e \right )\right )}}\) \(448\)

input
int((cot(f*x+e)*d)^(1/2)*tan(f*x+e),x,method=_RETURNVERBOSE)
 
output
-1/4/f*(-d/(1-cos(f*x+e))*(csc(f*x+e)*(1-cos(f*x+e))^2-sin(f*x+e)))^(1/2)* 
(ln(1/(1-cos(f*x+e))*(csc(f*x+e)*(1-cos(f*x+e))^2+2*sin(f*x+e)*(csc(f*x+e) 
^3*(1-cos(f*x+e))^3-csc(f*x+e)+cot(f*x+e))^(1/2)+2-2*cos(f*x+e)-sin(f*x+e) 
))+2*arctan(1/(1-cos(f*x+e))*(sin(f*x+e)*(csc(f*x+e)^3*(1-cos(f*x+e))^3-cs 
c(f*x+e)+cot(f*x+e))^(1/2)+1-cos(f*x+e)))-ln(-1/(1-cos(f*x+e))*(-csc(f*x+e 
)*(1-cos(f*x+e))^2+2*sin(f*x+e)*(csc(f*x+e)^3*(1-cos(f*x+e))^3-csc(f*x+e)+ 
cot(f*x+e))^(1/2)-2+2*cos(f*x+e)+sin(f*x+e)))+2*arctan(1/(1-cos(f*x+e))*(s 
in(f*x+e)*(csc(f*x+e)^3*(1-cos(f*x+e))^3-csc(f*x+e)+cot(f*x+e))^(1/2)-1+co 
s(f*x+e))))/(csc(f*x+e)*(csc(f*x+e)^2*(1-cos(f*x+e))^2-1)*(1-cos(f*x+e)))^ 
(1/2)*(csc(f*x+e)-cot(f*x+e))*2^(1/2)
 
3.2.94.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.81 \[ \int \sqrt {d \cot (e+f x)} \tan (e+f x) \, dx=-\frac {1}{2} \, \left (-\frac {d^{2}}{f^{4}}\right )^{\frac {1}{4}} \log \left (f \left (-\frac {d^{2}}{f^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right ) - \frac {1}{2} i \, \left (-\frac {d^{2}}{f^{4}}\right )^{\frac {1}{4}} \log \left (i \, f \left (-\frac {d^{2}}{f^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right ) + \frac {1}{2} i \, \left (-\frac {d^{2}}{f^{4}}\right )^{\frac {1}{4}} \log \left (-i \, f \left (-\frac {d^{2}}{f^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right ) + \frac {1}{2} \, \left (-\frac {d^{2}}{f^{4}}\right )^{\frac {1}{4}} \log \left (-f \left (-\frac {d^{2}}{f^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right ) \]

input
integrate((d*cot(f*x+e))^(1/2)*tan(f*x+e),x, algorithm="fricas")
 
output
-1/2*(-d^2/f^4)^(1/4)*log(f*(-d^2/f^4)^(1/4) + sqrt(d/tan(f*x + e))) - 1/2 
*I*(-d^2/f^4)^(1/4)*log(I*f*(-d^2/f^4)^(1/4) + sqrt(d/tan(f*x + e))) + 1/2 
*I*(-d^2/f^4)^(1/4)*log(-I*f*(-d^2/f^4)^(1/4) + sqrt(d/tan(f*x + e))) + 1/ 
2*(-d^2/f^4)^(1/4)*log(-f*(-d^2/f^4)^(1/4) + sqrt(d/tan(f*x + e)))
 
3.2.94.6 Sympy [F]

\[ \int \sqrt {d \cot (e+f x)} \tan (e+f x) \, dx=\int \sqrt {d \cot {\left (e + f x \right )}} \tan {\left (e + f x \right )}\, dx \]

input
integrate((d*cot(f*x+e))**(1/2)*tan(f*x+e),x)
 
output
Integral(sqrt(d*cot(e + f*x))*tan(e + f*x), x)
 
3.2.94.7 Maxima [A] (verification not implemented)

Time = 0.46 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.87 \[ \int \sqrt {d \cot (e+f x)} \tan (e+f x) \, dx=-\frac {d^{2} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{d^{\frac {3}{2}}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{d^{\frac {3}{2}}} + \frac {\sqrt {2} \log \left (\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{d^{\frac {3}{2}}} - \frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{d^{\frac {3}{2}}}\right )}}{4 \, f} \]

input
integrate((d*cot(f*x+e))^(1/2)*tan(f*x+e),x, algorithm="maxima")
 
output
-1/4*d^2*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d/tan(f*x 
 + e)))/sqrt(d))/d^(3/2) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) 
- 2*sqrt(d/tan(f*x + e)))/sqrt(d))/d^(3/2) + sqrt(2)*log(sqrt(2)*sqrt(d)*s 
qrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/d^(3/2) - sqrt(2)*log(-sqrt(2)*s 
qrt(d)*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/d^(3/2))/f
 
3.2.94.8 Giac [F]

\[ \int \sqrt {d \cot (e+f x)} \tan (e+f x) \, dx=\int { \sqrt {d \cot \left (f x + e\right )} \tan \left (f x + e\right ) \,d x } \]

input
integrate((d*cot(f*x+e))^(1/2)*tan(f*x+e),x, algorithm="giac")
 
output
integrate(sqrt(d*cot(f*x + e))*tan(f*x + e), x)
 
3.2.94.9 Mupad [B] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.32 \[ \int \sqrt {d \cot (e+f x)} \tan (e+f x) \, dx=\frac {{\left (-1\right )}^{1/4}\,\sqrt {d}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {\frac {d}{\mathrm {tan}\left (e+f\,x\right )}}}{\sqrt {d}}\right )\,1{}\mathrm {i}}{f}+\frac {{\left (-1\right )}^{1/4}\,\sqrt {d}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {\frac {d}{\mathrm {tan}\left (e+f\,x\right )}}}{\sqrt {d}}\right )\,1{}\mathrm {i}}{f} \]

input
int(tan(e + f*x)*(d*cot(e + f*x))^(1/2),x)
 
output
((-1)^(1/4)*d^(1/2)*atan(((-1)^(1/4)*(d/tan(e + f*x))^(1/2))/d^(1/2))*1i)/ 
f + ((-1)^(1/4)*d^(1/2)*atanh(((-1)^(1/4)*(d/tan(e + f*x))^(1/2))/d^(1/2)) 
*1i)/f